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ABSTRACT 
Urbanization often involves construction and deconstruction. In map updating processing, most procedures focus on the 
changed areas instead of reproducing the entire map. The automatic building change detection technology efficiently 
locates the change areas and can be utilized in map updating. The airborne multispectral images and digital surface model 
(DSM) provide useful features to detect building regions. This study proposes a UNetFormer fusion approach to detect 
building change areas. We also analyze the impact of different input features. In the evaluation, we use pixel-wise 
evaluation and object-based evaluation. Combining all the data, the best combination reached 99% of F1-Score in the 
overall pixel-wise assessment and 93% in object-based evaluation. The result demonstrated the integration of spectral, 
height, and old map building area information can detect the building area effectively. 
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1. INTRODUCTION 

In rapidly evolving urban environments, change occurs at an accelerated pace, characterized by the replacement of aging 
structures with new constructions. Consequently, topographic maps quickly become outdated, necessitating frequent 
updates. When addressing the task of map updating, it becomes imperative to identify areas needing high-priority updates 
and those requiring immediate attention. Recent advancements in remote sensing and deep learning have introduced 
several innovative techniques that can significantly enhance the efficiency of the mapping process. 
 
Previous research on building change detection can be broadly classified into three categories by data source: spectral 
imagery (Tan et al., 2016), digital surface models (DSM) (Lyu et al., 2020), and data fusion (Su et al., 2020). Spectral 
imagery encompasses color and texture features. Applying a Mask R-CNN-based model to aerial images has 
demonstrated the capability to detect building changes (Ji et al., 2019). However, aerial or satellite imagery with projective 
projection often encounters challenges such as relief displacement and shadows. The DSM approach directly conveys 
building height information through the difference between surface and ground heights. Consequently, areas of building 
change can be identified by comparing bitemporal DSMs (Warth et al., 2019).  
 
The fusion method combines spectral and height information, complementing each other. Furthermore, the inclusion of 
an old building map provides insight into previous building states, enhancing the accuracy of change detection (Su et al., 
2020). Su et al. (2020) employed an UNet-based encoder-decoder network and integrated three distinct data sources: new 
and old ortho images, height variations, and old map images. Comparative analysis of various input combinations revealed 
that utilizing all available input data yielded the most favorable outcomes. 
 
As the fusion approach produces better building change detection results, this study aims to adopt the UNetformer (Wang 
et al., 2022), a UNet-like transformer network, for building change detection tasks. Moreover, we evaluate the efficacy 
of incorporating DSM and old building maps into the process. 
 

2. MATERIAL 

2.1 Research area and data pre-processing 

The research area was located in Hsinchu, Taiwan, covering Taiwan eMap 23 frames about 161 km2. We split 22 
frames as train/validation and 1 as an independent test. The multiview aerial images were captured in 2016 and 2018 with 
spatial resolution 0.25m/pixel. The DSM was generated from these images and the true ortho images at via phogrammetry 
processing. To compose our building change dataset, every image was clipped into 512x512 pixels patches (Figure 1a) 
with a 50% lateral and horizontal overlap rate. The entire train/validation dataset 1048575 patches were split into 80% 
train and 20% validation. The old building map was rasterized from 2016 eMap building layers at the same spatial 
resolution. Ground truth building label was also rasterized from 2016 and 2018 eMap building layers, then computed 
building change label (Figure 1b) 
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(a) True orthoimage with building area overlay (b) Building change label example 
Figure 1. True orthoimage with building area overlay and label image example 

 
2.2 Data augmentation in model training 

In order to gain more dataset for traning, we designed a data augmentation workflow during model training (Table 1). 
The augmentation parameters of orthoimage are color and brightness random shift, while the DSM only applies height 
value augmentation. All the patches were applied the random flip augmentation in both horizontal and vertical direction. 

 
Table 1. Training data augmentation  

 Random augmentation Random flip 

RGB image Color / Brightness Horizontal / Vertical 

DSM image Brightness (height) Horizontal / Vertical 

Old building image None Horizontal / Vertical 

Label image None Horizontal / Vertical 

 
3. METHODOLOGY  

The original UNetFormer structure (FTUNetFormer) was designed for a single RGB input image (Figure 2a). We 
modified the structure by duplicating Swin Transformer (Liu, et al. 2021) encoding layers and made it a three-branch 
weight-sharing siamese structure (Figure 2b). The transformer siamese structure integrates two images on change 
detection task (Bandara & Patel, 2022). Our network was designed to fuse different data types and different information, 
including RGB color, DSM height value, and old building map. 

 

 
(a) Original UNetFormer Structure 
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(b) Modified UNerFormer Structure 

Figure 2. UNetFormer structure and our modification 
 
3.1 Model training  

The computer, equipped with i7 9700KF, 96GB RAM, RTX Titan 24GB, trained the model for 50 epochs about 14 
hours. The best model checkpoint was monitored by validation mIoU index. We designed three different combinations, 
(1)RGB + DSM, (2) RGB + Map, and (3)RGB + DSM + Map (Table 2), to evaluate the performance of different input 
dataset. 

Table 2. Training input combination 
 RGB image DSM image Building Map 

RGB_DSM √ √  
RGB_Map √  √ 

RGB_DSM_Map √ √ √ 
 
3.2 Model prediction  

Although the training process used a 512x512 input size, the prediction process could be larger, such as 1024x1024, 
because Swin transformer was designed to be a multi-scale feature map. Each prediction patch has pixel-wise 
classification confidence value. We aggregated these values in place and merged the entire prediction image. A single 
eMap frame prediction took about 3 minutes on GTX 1080Ti. 
 

4. EXPERIMENT RESULTS AND DISCUSSION 

4.1 Pixel-wised evaluation 

In order to evaluate the difference between the predicted result and the ground truth label, we compared each value in 
two images at the same pixel. True positive (TP) occurs when the prediction matches the ground truth label. False positive 
(FP) happens when there is no ground truth label, but the prediction has a value or the prediction value does not matches 
to ground truth label. False negative (FN) occurs when there is no prediction value, but the ground truth has a label. 
Precision = TP/(TP+FP), Recall = TP/(TP+FN), F1_Score = 2 x Precision x Recall / (Precision + Recall). Pixel-wise 
evaluation showed that DSM improved building construction detection (Table 3), while building map improved 
deconstruction and no change. RGB_DSM_Map successfully fused all information and got better results. 

Table 3. Three combination pixel-wised evaluation 

RGB_DSM 

 Deconstruction No Change Construction Overall 

Precision 76.72% 99.09% 80.86% 99.07% 

Recall 42.20% 88.63% 82.83% 98.90% 

F1_Score 54.44% 93.57% 81.84% 98.98% 

RGB_Map 

 Deconstruction No Change Construction Overall 

Precision 46.91% 99.10% 99.47% 99.13% 
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Recall 98.30% 99.60% 64.83% 99.67% 

F1_Score 63.51% 99.35% 78.49% 99.40% 

RGB_DSM_Map 

 Deconstruction No Change Construction Overall 

Precision 74.08% 99.45% 99.09% 99.74% 

Recall 96.93% 98.94% 80.90% 99.74% 

F1_Score 83.97% 99.14% 89.08% 99.74% 

 
 
 

4.2 Object-based evaluation 

Several small change units on the label were too small to distinguish. We established two thresholds to solve the issue. 
A change unit area must be larger than 9 m2 and at least IoU > 0.1. An example is shown in Figure 3, where the black line 
area represents a label change unit, and the blue pixels are prediction results. Equation 1 shows the calculation of IoU. 
RGB_DSM_Map was the best combination in change unit evaluation (Table 4). Adding an old building Map could 
improve prediction results more than adding DSM. 

 
 

 
label: Construction             prediction: Construction (correct) 

Figure 3. change unit example 
 

IoU = 
்௉

்௉ାி௉ାிே
 =  

ଷ଻ଶସ

ଷ଻ଶସା଴ାଷ଺ଷ
 = 0.91                                       (1) 

 
Table 4. Three combination change unit evaluation 

RGB_DSM 

 Deconstruction No Change Construction Overall 

Precision 68.52% 91.80% 73.30% 88.79% 

Recall 37.76% 90.80% 42.02% 78.85% 

F1_Score 48.68% 91.30% 53.42% 83.53% 

RGB_Map 

 Deconstruction No Change Construction Overall 

Precision 62.65% 98.40% 60.98% 91.27% 

Recall 71.23% 99.34% 58.14% 91.27% 

F1_Score 66.67% 98.87% 59.52% 91.27% 

RGB_DSM_Map 

 Deconstruction No Change Construction Overall 
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Precision 84.53% 99.34% 72.46% 94.88% 

Recall 69.61% 99.49% 59.17% 91.18% 

F1_Score 76.34% 99.42% 65.14% 92.99% 

 
4.3 Case Discussion 

4.3.1 Omission cases in RGB_DSM_Map model 
The canopy has existed in past and current images. However, the past build label didn’t account for it (Figure 4). After 

that, we reviewed the training dataset and found the building area definition might have been changed. Several building 
canopy areas were not labelled on the past building map but on the current building map. The building area definition 
change could led to this omission errors. 

(a) Change label (b) Prediction (c) past image (d) now image 
Figure 4. An omission case at building canopy 

 
4.3.2 Commission cases in RGB_DSM_Map model 

A part of the building was under renewal, but the dataset tent to classify it into construction areas. It might be the 
feature of this dataset because the same condition happened to other buildings in the training dataset. Some under-
construction areas were labeled as building, while others were not. We were not involved in the eMap production and 
didn’t know how to determine the completeness required for labelling an area as building. This commission error case 
demonstrated the importance of experience that the AI model cannot achieve at this time. 

(a) Change label (b) Prediction (c) past image (d) now image 
Figure 5. A commission case at an under-renwal building area 

 
5. CONCLUSION 

The input data experiment revealed the best combination of spectral image, height elevation, and building area. In this 
study, we modified UNetformer, which could effectively fuse different information by sharing weight siamese structure. 
The best model achieved pixel-wised overall F1-Score 99%, and the best change unit evaluation overall F1-Score of 93%. 
The test dataset had 115 deconstruction units, 1387 no-change units, and 353 construction units. Because no change in 
building category was the main component, adding a building map directly introduced existing information that 
significantly improved prediction results. Additionally, DSM height information enhanced building construction 
detection, as the height difference could obviously represent ground object change. 
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